Archiving for today...and the next century

Our clinical information: When our present is past, what can the future learn?

Mark Frisse, MD, MS, MBA
Vanderbilt University
April 5, 2011
Our charge

How to preserve and provide access of digital health information for a sufficiently long period of time to maximize its value to:

• patients
• caretakers
• scientists
• <others?>

Expected workshop outcomes

• Understand the current landscape on EHRs
• Survey current practices and identify best strategies to be used as models
• Begin to develop requirements, technologies, standards and best practices for long-term preservation and life-cycle management on EHRs
• Differentiate between requirements for patient care and those for secondary use
• Identify cultural and technological challenges
• Catalog current legal requirements for retention of EHRs
• Identify interested collaborators to form a WG on this area
• Discuss possible test scenarios and datasets for collaboration and test bed
What is the problem......today?
Digital preservation contexts

Our goal: to address the sustainability challenges & develop a course of action

- scholarly discourse
- research data
- commercially-owned cultural content
- collectively-produced health care content

Top four ways of losing digital information

- Can not find it
- Can not validate its authenticity
- Can not read it
- Can not interpret it correctly

Implications to care – today

• Can not find it
 – Clinical care (Hogan & Wagner, 1997)
 – Public health (Doyle, 2002)

• Can not validate its authenticity (see: authentication)
• Can not read it (see: interoperability)
• Can not interpret it correctly (see: medical errors)
Principles: *Ensuring Long-Term Access to Digital Information* *

• Recognition of the benefits of preservation
• Incentives to act in the public interest
• Selection of materials with long-term value
• Organization/governance of preservation
• Ongoing, efficient resource allocation

BRTF Principles – and clinical care

• Recognition of the benefits of preservation
• Incentives to act in the public interest
• Selection of materials with long-term value
• Organization/governance of preservation
• Ongoing, efficient resource allocation

How can we characterize the demand for information?
Time value of information (static media)
The general case (slowly dynamic media)

Value

cost / unit time

$

cumulative cost

$

time →
Time-value of information (active dynamic media)

value

cumulative cost

Value

cost / unit time

time \rightarrow

$\text{Time - value of information (active dynamic media)}$
Value of a dinosaur fossil*

Value

\[t \text{ (millennia)} \]

“road kill”

“pretty interesting” ->

*what’s more static than a fossil? and inexpensive storage too!
Incremental fossil value?

Value

“road kill”

“I’m more certain” ->

“pretty interesting” ->

t (millennia)
Value of a more complete dinosaur

Value

"road kill"

"pretty interesting" ->

"I’m more certain" ->

"off the charts" ->

Jurassic Park

n fossils

one fossil

t (millennia)
My health information (personal perspective)

cumulative cost

cost / unit time

value to me

Value

time

My health information (personal perspective)

Value

time

cumulative cost

cost / unit time

value to me

$
My health information (aggregate perspective)

Value

- value to me
- value to others
- cumulative cost
- cost / unit time

Time →
What are the constraints on the supply of information?
Constraints on supply

• Consent — *my health is none of your business!*
• Collection — *did I write that down?*
• Veracity — *I really didn’t mean what I said*
• Storage — *where did I put that note?*
• Aggregation — *is all of this really you?*
• Encryption — *has anyone seen my keys?*
• Presentation — *all the King’s horses....*
• Interpretation — *what did you mean by that?*
What are the important steps forward?
A solution framework

1. Incremental efforts
 – time, alignment, money, personnel, will

2. Transformational efforts

3. Intractable problems
 – Scientific / computational
 – Semiotic / hermeneutic
 – Conflicting objectives (privacy / disclosure)

ONC & PCAST: Incremental, transformational, or intractable?
Hypothesis: Think of it as one larger problem

Three variants of a single challenge:

1. Acute access for patient care
2. Intermediate aggregation and secondary use
3. Long-term preservation and access

Each variant *must* leverage the others with common approaches to:

- consent, collection, aggregation, interpretation, use
- governance, economic sustainability
Through governance and sustainable models...

- **Consent** — “digital resurrection” through data “living wills”
- **Collection** — leverage EHRs and standards
- **Veracity** — plan for more ephemera, PHR
- **Storage** — keep storage costs low; maintain context
- **Aggregation** — provenance and identity meta-data
- **Encryption** — think “keys” for the long-term
- **Presentation** — incremental models; different abstraction levels
- **Interpretation** — naming authority, versions,
Accept complexity

Figure 1. Complete sequence of the cDNA encoding the bovine growth pre-hormone. The deduced amino acid sequence is indicated and the pre-sequence is underlined. The first amino acid of the mature hormone (Ala) is marked in bold. This sequence is deposited at GenBank (accession number AF034386).
Why this is important

We become what we behold.

We shape our tools,

and then our tools shape us.

Marshall McLuhan, 1964
Time value of information: many possibilities

For a given data set from an individual or a population, the time value of information can be:

- A decay curve
- An maturing value curve
- A perishable value curve
- An inverse perishable value curve
- Undecidable or random
Some central questions

• What is the single most important step that has to be taken to enable preservation and sharing or re-use of EHR?

• What is the single greatest obstacle to preservation and sharing or re-use of EHR?